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AN OPTIMUM RADIATOR-FIN PROFILE
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A variational problem on the determination of an optimum-weight
radiator-fin profile is formulated so as to result in a uniquely defined
solution. The results of the computer-derived solution are presented
here. The effect of certain structural factors on the weight of the ra-
diator fin is analyzed.

Many papers have been devoted to the study of ra-
diator fins, and these deal particularly with a variety

Fig. 1. Design diagram.

of profiles, including: flat [1—4], triangular [3, 5],
trapezoidal [3], and those with a constant temperature
gradient [3]. It is demonstrated that the above~enu-~
merated complex-profile fins are lighter in weight,

all other conditions being equal, than the flat fin. How-

ever, these are not the lightest fins. Reference [6] is
devoted to the solution of the variational problem con-
cerned with finding the optimum-weight radiator-fin
profile. The author of that reference, desirous of
achieving an analytical solution, used the function of
the change in temperature over the fin as the unknown
extremal and introduced the ratio of the fin—-tip tem-
perature to the fin-hase temperature as the specilied
initial quantity. This prevented the unique definition
of the derived solution. However, from the physical
standpoint the requirement of achieving a fin of the
lowest possible weight must also specify uniquely the
optimum profile of the fin and its dimensions.

Below we present that formulation of the variational
problem concerned with determining the optimum-
weight radiator-fin profile which leads to a uniquely
defined solution, and we also present that solution.

Let us transform to dimensionless form the heat-
balance equation written for a radiator-fin element
(Fig. 1), with the standard assumptions [3],

d(hh,dT/dx) _ %0 T,
dt
using the following dimensionless quantities:
@ =hhy, 0=T/Ty, t =x/L, ¢ =20 Tol2Nhy. (1)

Here T is the fin temperature at cross section x; T,

is the fin-base temperature; A is the thermal eonduc-

tivity of the fin material; € is the surface emissivity

of the fin; o is the Stefan-Boltzmann constant,
After transformation, we derive the equation

d (¢ d 0/dt)
df

=cft (2)

with the boundary conditions
1)0=1whent¢=0, 2)d0/df =0when ¢=1.

Let us write the expression for the specific weight
v of the fin:

1
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where G is the weight of the fin; p is the density of fin
material; Qpem is the heat removed to the surround-
ing space per unit of fin width, and this, in turn, can
be expressed as

1
Quem=2e0THL | 6*4t. (3)
0

Using (1) and (8), by carrying out certain substitu-
tions we obtain

1
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We see from this expression that the fin of the lowest
weight corresponds to the minimum of the functional

1
S odt
o=

c(0§1 ot dt)’

which is a function of the dimensionless fin-conductiv—
ity parameter c and of the fin profile, expressed in di-
mensionless form by the function ¢(t), which is the un-
known extremal.

The dimensions of the radiator fin are determined
from the following expressions:

1
L= Quup/2e0 T} | 6% at,
0

1

ho = 2Qhem/es The ( [ otar ).
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Fig. 2. Profile of optimum fin.
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Fig. 8. Fin weight versus relative thickness at
the end of fin.
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Fig. 4. Fin weight versus value of derivative ¢’ at fin base

and at its end: A) region of concave profiles; B) region of

convex profiles; C) region of concave-convex profiles;

D) region of convex-concave profiles; cross-point of curves—
triangular fin.
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It is impossible to find the analytical extremal ¢(t)
when the relationship between the functions ¢, 6 and
the parameter ¢ is specified by the second-order non-
linear differential equation (2) with two~point boundary
conditions. For this purpose we will use one of the
direct methods for solving variational problems—the
method of functional descent [7, 8], which reduces the
solution of the variational problem to the solution of
the problem concerned with finding the optimum of the
function for many variables. This method presupposes
the preliminary specification of the form of the function
being sought. In our case we know that the unknown func-
tion must be positive and monotonically diminishing. Itis
only at the end of the interval, when t = 1, that the
function ¢ can vanish. In particular, these require-
ments are satisfied by a third-degree polynomial. The
coefficients of the polynomial are determined in this
case from the values of the function ¢ and its deriva-
tive @' at the base of the fin (¢;, ¢;) and at the end of
the fin (@q, @g):

o =14 at + b2+ dis, (4)

where
a=q,
b =3p, — 9, —3—2¢;,
d = 2¢,— 29, + -

The functional & thus becomes a function of four
independent variables ¢, @5, ¢¢, and @,

The minimum of & was determined with the aid of
the digital M-20 computer. Given fixed values for c,
@), 9o, and @}, for the solution of Eq. (2), the latter
was presented in the following finite-difference form:

8,1 =0, + (d0/ds), Az,

(d0/dt)s = [cBIA L — (d0/dt), g,/ pyare

The boundary condition d6/dt = 0 when t = 1 was satis-~
fied by proper selection of (d6/dt)g.

We see from the above-cited formulas that the com-
puter solution assumes that the function ¢ is not equal
to zero, even at the tip of the fin, In this connection,
the minimum assumed value of ¢ was not zero, but
0.01, In practical terms, this distinction has no effect
on the optimum profile, nor on the dimensions of the
fin.

Optimization resulted in a minimum value & = 3.93,
which corresponds to ¢ = 0.9, ¢} = ~2.5, ¢} =0, and

1

@e = 0,01. The magnitude of the integral S 0*dt, nor-
0

mally referred to as "he efficiency of the fin, and de-
termining the length of the fin, is equal to 0.438. The
optimum-fin profile in accordance with formulas (4)
is determined by the equation
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¢ = 1 —2.5¢ 4+ 2032 —0.52¢

and is shown in Fig. 2,

In order to produce fins that are easier to fabricate,
it is very important that we know the influence exerted
by the parameters which govern the fin profile on the
weight of the fin and on its dimensions. The proposed
method of solution permits us to undertake such an
analysis. It develops that the conductivity parameter c
has but a slight effect in the 0.8~1.0 interval on the
weight of the optimum fin. The results from an eval-
uation of the effect exerted by ¢ on the weight of the
fin for certain specific functions ¢ are showninFig. 3.
Curves A correspond to concave fins

e=14(.—DE@—u)t~
+@—De. —H2,
while curves B correspond to convex fins
¢ =1+ u(g,-— Dt (1—u)(p. — 1%

Figure 4 shows the effect of the derivatives ¢' at
the base of the fin (¢g) and at the tip of the fin (¢5) on
the weight of the fin when the curve for ¢ is specified
in the form of (4) for ¢ = 0.01 and ¢ = 0.9.

From the derived data we can draw the conclusion
that the values of the function ¢ and its derivatives at
the tip of the fin (¢, and @) exert particularly signifi-
cant influence on the weight of the fin; the quantities ¢
and @;, however, have very little effect on fin weight.

Comparison of an optimum-profile fin relative to
a triangular fin shows that the former is 11% lighter,
15% longer, and 33% thicker at the base.
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